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We discuss the implementation of diffuse reflection boundary conditions in a thermal lattice Boltzmann
model for which the upwind finite difference scheme is used to solve the set of evolution equations recovered
after discretization of the velocity space. Simulation of heat transport between two parallel walls at rest shows
evidence of temperature jumps at the walls that increase with Knudsen number. When the walls move in
opposite directions with speeds ±uW, fluid velocity slip is observed at the walls, together with temperature
jumps.
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I. INTRODUCTION

Implementations of no-slip boundary conditions are
widely used in the lattice Boltzmann �LB� literature �see
�1–4� and references therein�. However, experimental and
theoretical studies which date back to the time of Maxwell
�5� and Smoluchowski �6� and were extended thereafter by
many other scientists �see, for example, �7–9� and references
therein�, account for the existence of fluid temperature jumps
and velocity slip near walls. Temperature jumps and velocity
slip become noticeable when the Knudsen number Kn �de-
fined as the ratio of the mean free path to the fluid system
size� is large enough �typically Kn�0.01� and the continuum
assumption in the derivation of the Navier-Stokes equations
breaks down. This happens mainly at two extreme scales:
high-speed high-altitude aerodynamics and micro/nanosize
devices known as microelectromechanical systems �MEMS�
�10,11�. Technological developments in these areas still re-
quire appropriate computer models to capture jump/slip phe-
nomena at the walls, which may provide an alternative to
molecular dynamics or direct simulation Monte Carlo mod-
els �the interested reader may refer to �8,11–14� and refer-
ences therein for an overview of these models�.

According to the diffuse reflection model �7,9,10,15�, gas
particles that strike a microscopically rough wall get re-
flected at some random angle that is uncorrelated with their
angle of incidence. This is due to particle-wall interaction,
which has the effect of assigning some information belong-
ing to the wall to the reflected particles. The particles that
leave the wall follow a Maxwellian distribution law, param-
etrized by the wall velocity uW and the wall temperature �W.

The purpose of this paper is to discuss the implementation
of diffuse reflection boundary conditions for lattice Boltz-
mann models. For convenience, our discussion will refer to a
recently introduced thermal finite difference lattice Boltz-
mann �FDLB� model with multiple speeds in two dimensions

�16�, which is briefly reviewed in Sec. II. Other FDLB mod-
els that are able to recover the correct conservation equations
for mass, momentum and energy density from a single set of
distribution functions, such as the discrete velocity model
introduced in �17,18�, may be considered as well. The relax-
ation time, as well as the definition of the mean free path and
the Knudsen number are addressed in Sec. III. Implementa-
tion of the diffuse reflection boundary conditions for the ther-
mal FDLB model is described in Sec. IV. To test our diffuse
reflection boundary conditions, we considered the stationary
solutions of two physical problems. The first one is the prob-
lem of heat transport between two parallel walls at rest. The
second one is Couette flow between parallel oppositely mov-
ing walls having the same temperature. For these simple
problems, approximate solutions based on continuum models
for the temperature and velocity fields are derived in Sec. V
and the existence of the temperature jump and velocity slip is
discussed in connection with the ideas already developed by
Maxwell and Smoluchowski. FDLB simulation results are
reported in Sec. VI. The results show that both physical phe-
nomena �temperature jump and velocity slip� are well recov-
ered using the diffuse reflection boundary conditions.

II. REVIEW OF THE THERMAL FDLB MODEL

The thermal FDLB model �16� is derived from the Bolt-
zmann equation with the well-known Bhatnagar-Gross-
Krook �BGK� collision term �1–4� using an appropriate pro-
cedure for the discretization of the velocity space. Three
basic reference quantities may be used to express the Boltz-
mann equation in a nondimensionalized form. The first one is
a characteristic length lR of the system, e.g., the width of the
channel where the fluid is flowing. The second one is a ref-
erence mass mR. For a single component fluid, the natural
choice for mR is the mass of the fluid particles. The third
quantity is a reference energy eR=kBTR where kB is Boltz-
mann’s constant and TR is a reference temperature. The non-
dimensionalized temperature is �=T /TR. All simulation re-
sults reported in this paper will be plotted in
nondimensionalized form. The references for the following
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physical quantities are derived from the basic quantities
mentioned above: speed cR=�kBTR /mR, time tR= lR /cR, par-
ticle number density nR=1/ lR

3 , mass density �R=mR / lR
3 , spe-

cific heat cpR=kB /mR, dynamical viscosity �R=mRcR / lR
2 and

thermal conductivity �R=kBcR / lR
2 . Since the nondimensional-

ized mass of the fluid particles is assumed to be m=1, the
nondimensionalized sound speed equals cS=���D+2� /D,
where D=2 is the dimension of the coordinate space.

The discretization procedure used in �16� involves a set of
33 nondimensionalized velocities �e0 ,eki�k=1, . . .4 , i
=1, . . .8��

e0 = 0,

eki = �cos
��i − 1�

4
,sin

��i − 1�
4

	ck, �1�

where the values of ck are given by Eq. �8� below. The cor-
responding distribution functions f0= f0�x , t�, fki= fki�x , t�, k
=1, . . .4 , i=1, . . .8 evolve according to the following set of
nondimensionalized equations:

�t fki + eki · � fki = −
1

	
�fki − fki

eq� . �2�

In this model, the equilibrium distribution functions f0
eq

= f0
eq�x , t�, fki

eq= fki
eq�x , t�, k=1, . . .4 , i=1, . . . ,8 are expressed

using a series expansion ski=ski�� ,u� up to fourth order
terms in the local fluid velocity u=u�x , t�, which has the
Cartesian components u
, 
=1,2 �summation over repeated
Greek indices is understood�:

fki
eq = �Fkski, �3�

ski = 
1 −
u2

2�
+

u4

8�2� +
1

�

1 −

u2

2�
�eki�u�

+
1

2�2
1 −
u2

2�
�eki�eki�u�u� +

1

6�3eki�eki�eki�u�u�u�

+
1

24�4eki�eki�eki�ekiu�u�u�u. �4�

Here �=��x , t� is the local fluid density and �=��x , t� is the
local temperature expressed in nondimensional form. The
weight factors Fk=Fk��� that appear in Eq. �3� are expressed
in �16� as functions of the local temperature �, as well as the
speeds ck, k=1, . . . ,4:

Fk =
1

ck
2�ck

2 − c�k+1�
2 ��ck

2 − c�k+2�
2 ��ck

2 − c�k+3�
2 �

� �48�4 − 6�c�k+1�
2 + c�k+2�

2 + c�k+3�
2 ��3 + �c�k+1�

2 c�k+2�
2

+ c�k+2�
2 c�k+3�

2 + c�k+3�
2 c�k+1�

2 ��2 − c�k+1�
2 c�k+2�

2 c�k+3�
2 �/4� ,

�5�

F0 = 1 − 8�F1 + F2 + F3 + F4� . �6�

Here we used the notation �l=1,2 ,3�

�k + l� = �k + l , k + l � 4,

k + l − 4, k + l � 4.
 �7�

The nondimensionalized values of the speeds ck �k=1, . . .4�
were determined in �16� by requiring the weight factors Fk to
be positive and calculating correct moments up to 6th order
in u for the largest possible temperature range �0.4��
�1.6�:

�ck� = �1.0,1.92,2.99,4.49� . �8�

The collide and stream philosophy of standard LB models
�1–4�, where particles move along the lattice links with the
lattice velocity c, implies the close relationship c=k�s /�t
between the discretizations of both velocity and coordinate
spaces �k is an integer number, �s is the lattice spacing and
�t is the time step�. Such a relationship is no longer consid-
ered in finite difference lattice Boltzman �FDLB� models
�19–23�, which start directly from the Boltzmann equation
and allow the freedom to use multispeed models, like the one
defined by Eqs. �1� and �8�. Standard LB models cannot
handle discrete velocity sets like the one in Eq. �8�, where
the nondimensionalized velocities are no longer expressed as
integer numbers. This justifies the use of finite difference
numerical schemes for the evolution equations �2�.

The thermal FDLB model allows one to recover the cor-
rect conservation equations for mass, momentum and energy
density of an ideal gas �16�, where dimensionless physical
values of the transport coefficients � �dynamic viscosity� and
� �heat conductivity� are

� = ��	 , �9�

� = 2��	 . �10�

The value of the Prandtl number follows immediately �the
nondimensionalized value of the specific heat at constant
pressure is cp=2 for the LB model used in this paper�:

Pr =
cp�

�
= 1. �11�

III. RELAXATION TIME, MEAN FREE PATH
AND KNUDSEN NUMBER

The majority of single-component LB models in the lit-
erature use a constant value of the nondimensionalized relax-
ation time 	 which appears in the evolution equations �2�.
The relaxation time 	 is related to the nondimensionalized
mean free path through

� = 	c̄ �12�

where c̄ is the nondimensionalized average speed of the fluid
particles. According to kinetic theory �7�, the average speed c̄
is always proportional to ��. In the two-dimensional case,
we have

c̄ = ���/2. �13�

However, for the thermal LB model we use in this paper, we
prefer to use the direct definition of the local average speed:
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c̄ =
�k=1

4
ck�i=1

8
fki

f0 + �k=1

4 �i=1

8
fki

. �14�

An alternative definition of c̄ involving the equilibrium dis-
tribution functions fki

eq instead of fki in the equation above
was found to give similar results during our computer simu-
lations. The use of fki

eq instead of fki in Eq. �14� gives the
following expression of the average speed c̄, which is found
to dependent on the local temperature �, as well as the local
fluid velocity u

c̄ = �
k=1

4

ckFk�8 − 2u2
2

�
−

ck
2

�2� + u4
 1

�2 −
ck

2

�3 +
ck

4

8�4�	 .

�15�

The unphysical dependence of the average speed c̄ on the
local fluid velocity u is a consequence of the series expan-
sion �4� of the Maxwellian equilibrium distribution function,
which results in the loss of Galilean invariance. However, the
effect of the local fluid velocity on the average speed is neg-
ligible for small values of Mach’s number Ma=u /cS. If we
use Eq. �15� to plot the temperature dependence of the aver-
age speed c̄ for u=0 �Fig. 1�, we see that in the temperature
range 0.4���1.6 where the model �16� is supposed to be
valid, the resulting curve is close enough to the theoretical
expression �13�, which was derived using kinetic theory. This
strongly supports the capability of the thermal LB model
introduced by Watari and Tsutahara �16� to properly capture
physical phenomena where the mean free path and the cor-
responding nonvanishing value of the Kundsen number play
an important role.

As mentioned previously, the reference length lR usually

equals the size L̃ of the fluid system �e.g., the channel width�.
Consequently, when 	 is a constant simulation parameter, the
local Knudsen number is �dimensionalized quantities carry
the tilde symbol�

Kn	 =
�̃

L̃
= � = 	c̄ . �16�

Then according to Eq. �13�, we will have Kn	���.

When 	 is not a constant simulation parameter, we pro-
ceed as follows: According to kinetic theory, the mean free
path is inversely proportional to the dimensionless particle
density. We therefore allow 	 to be a variable and define a
Knudsen number

Kn� =
�̃

L̃
= � =

�

n
, �17�

where � is a dimensionless constant. The constant � de-
pends on the nondimensionalized particle diameter d �7,24�:

� =
1

�2�d2
. �18�

Since the physical value d̃ of the particle diameter is always
smaller than the reference length lR �which is usually the
channel width�, the nondimensionalized value of the constant
� is expected to exceed the unit value by several orders of
magnitude. When considering a typical capillary channel, we

may take lR=10−6 m or lR=10−3 m. For d̃ of the order of a
few nanometers, we get ��1.0�106 and ��1.0�1012,
respectively.

In order to preserve the relation �12� for a hard sphere gas,
the nondimensionalized relaxation time 	 should be depen-
dent on the local particle density n, as well as the average
speed c̄ defined by Eq. �14�:

	 =
�

nc̄
. �19�

According to kinetic theory where c̄���, the relaxation time
�19� is more realistic than the constant relaxation time since
it gives a dynamic viscosity which is density independent
and follows a nonlinear dependence on temperature, ����
�7�. For isothermal fluid systems, the relaxation time �19�
reduces to the density-dependent relaxation time 	�1/n of
the split collision term introduced in �25�. Since the distribu-
tion functions fki defined in each lattice node change with
temperature, the average speed �14� is still temperature de-
pendent.

In the present paper, we will report simulation results re-
covered using both versions of the relaxation time, the con-
stant one and the density-dependent relaxation time �19�. We
will refer to the corresponding Knudsen number, Eqs. �16�
and �17�, respectively, when discussing the simulation results
for each case.

IV. DIFFUSE REFLECTION BOUNDARY CONDITIONS

The thermal FDLB model �16�, as originally developed
by its authors, uses the second order upwind finite difference
scheme to solve the evolution equations �2� in the two-
dimensional space. A square lattice L was used to perform
the space discretization. Thermal Couette flow was success-
fully simulated using this model and no-slip boundary con-
ditions �16�. For this purpose, lattice boundary nodes were
located on the channel walls and an extrapolation method
�26,27� was used to provide the values of the distribution

FIG. 1. Temperature dependence of the nondimensionalized av-
erage speed, Eq. �15� for u=0. The continuous line shows the the-
oretical result of the kinetic theory, Eq. �13�, and is provided for
comparison.
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functions in these nodes. This procedure forces the fluid’s
temperature and velocity �defined in the lattice boundary
nodes� to equal the wall’s temperature and velocity, respec-
tively.

In this paper, we adopt a different strategy already used
by other authors and place the channel walls at half lattice
spacing outside the boundary nodes �28–30�, as shown in
Fig. 2. We preserve the forward Euler difference to compute
the time derivative in �2�, as done in �16�, but we switch to
the first order upwind scheme on the characteristic line in
order to compute the effect of the operator eki ·� on the
distribution function fki �23�. Besides better numerical stabil-
ity in the presence of density gradients �31,32�, the first order
upwind scheme, which involves information from two lattice
nodes on each characteristic line, may be easily handled on
the boundaries since this scheme requires only a single row
of ghost nodes to be introduced outside the walls, as de-
scribed below. According to the upwind scheme, the distri-
bution functions defined at time t in the node x of the square
lattice L are updated as follows:

fki�x,t + �t� = fki�x,t� −
1

	
�fki�x,t� − fki

eq�x,t�� −
ck�t

�s
�fki�x,t�

− fki�x − Ai�seki/ck,t�� . �20�

Here �s is the lattice spacing, �t is the time step and the
constants Ai are given by

Ai = � 1, i = 1,3,5,7,

�2, i = 2,4,6,8.
 �21�

Application of the updating rule �20� in the bulk nodes of
the square lattice in Fig. 2 is straightforward. The same holds
for lattice nodes where periodic boundary conditions in the y
direction apply. Special attention should be paid when updat-
ing the distribution functions in the boundary nodes of the
lattice �i.e., those fluid nodes located near the channel wall,
which have the x index j=1 or j=Nx in Fig. 2� since the
distribution functions fki�x−Ai�seki /ck , t� are not defined for
certain values of the index i. The ghost nodes where these
distribution functions should be evaluated �i.e., the lattice
nodes with j=0 or j=Nx+1� are outside the walls at half
lattice spacing and we must provide appropriate handling
rules.

For convenience, we refer to the ghost node �0, l� located
near the left channel wall. According to the diffuse reflection
concept, the distribution functions defined in the boundary
nodes �1, l−1�, �1, l� and �1, l+1� shown in Fig. 3, whose
corresponding velocity vectors point towards the ghost node
�0, l�, mix together �i.e., “thermalize”�. The mixing process
gives rise to new values of the distribution functions fki

0,l �k
=1, . . . ,4 , i=1,2 ,8� defined in the ghost node �0, l�. These
new values carry the information related to the wall tempera-
ture �W and the wall velocity uW. When the fluid density at
the wall �W has no variation along the y direction �as is the
case for Couette flow�, the requirement that the distribution
functions follow the Maxwellian distribution law on the
walls reads

fk1
0,l + fk1

1,l

Fk��W�sk1��W,uW�
=

fk2
0,l + fk2

1,l+1

Fk��W�sk2��W,uW�

=
fk8

0,l + fk8
1,l−1

Fk��W�sk8��W,uW�
= 2�W,

k = 1, . . . ,4. �22�

Equations. �22�, together with the requirement that there is
no mass flux perpendicular to the wall

FIG. 2. The square lattice used for finite dif-
ference LB simulation of channel flow: �, bulk
nodes; �, boundary nodes; �, ghost nodes out-
side the walls. Walls are situated at half lattice
spacing between boundary nodes and ghost
nodes. Periodic boundary conditions are used in
the vertical direction.

FIG. 3. Diffuse reflection procedure: �, ghost nodes; �, bound-
ary nodes; �, wall points where the distribution functions fki

�i=1,2 ,8� follow the Maxwellian distribution law.
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�
k

ck� fk5
1,l +

�2

2
�fk4

1,l−1 + fk6
1,l+1�	 = �

k

ck� fk1
0,l +

�2

2
�fk2

0,l + fk8
0,l�	
�23�

may be solved to get the values of the distribution functions
in the ghost node �0, l� after each time step.

V. COUETTE FLOW IN MICROCHANNELS:
TEMPERATURE JUMP AND VELOCITY SLIP

In order to have some basis for comparison of our simu-
lations, we need approximate analytical solutions for two
fluid flow problems that we later simulate using the thermal
FDLB model with the diffuse reflection boundary conditions.
For this purpose, we solve the classical continuum equations
�Navier-Stokes-Fourier� for the average fluid velocity and
temperature fields. We consider a fluid confined between two
infinite walls located at x= ±1/2, which are parallel to the y
axis. The left and right walls move along the y axis with
constant speeds uWL and uWR, respectively. Their tempera-
tures are �WL and �WR. We restrict ourselves to the stationary
case and assume that the x component of the fluid velocity
vanishes. In this case, the nondimensionalized density ���,
temperature ��� and velocity �uy �u� fields depend only on
the x coordinate and the conservation equations recovered
from the FDLB evolution equations �2� using the method of
moments �16� become

�x���� = 0, �24�

�x����xu�� = 0, �25�

�x����x��� + �x��u��xu�� = 0. �26�

When using a constant relaxation time 	, the transport coef-
ficients � and � are found to be constant since the fluid
pressure �� is constant according to Eq. �24�. If local tem-
perature has no large variations in the fluid system �as will
frequently happen in the FDLB simulations reported in this
paper�, the assumption of constant values of the transport
coefficients may be considered as an approximation in the
case of the relaxation time provided by Eq. �19�.

To get the temperature and the velocity profile across the
channel by solving Eqs. �25� and �26�, we need to provide
the necessary boundary conditions. We follow the ideas of
Maxwell and Smoluchowski �5,6�, as well as the outlines in
�8,24,33� and write the exprressions of the temperature
jumps and velocity slips at the left �L� and right walls �R�
respectively, to the first order in the Knudsen number:

�L
jump = �FL − �WL =

2�

� + 1

1

Pr
�Kn

��

�x
	

FL
, �27a�

�R
jump = �WR − �FR =

2�

� + 1

1

Pr
�Kn

��

�x
	

FR
, �27b�

uL
slip = uFL − uWL = �Kn

�u

�x
	

FL
, �28a�

uR
slip = uWR − uFR = �Kn

�u

�x
	

FR
�28b�

��=cp /cv is the adiabatic coefficient; for the LB model con-
sidered in this paper, �=2�. The indices FL and FR in the
relations above refer to the values of the corresponding quan-
tities evaluated in the fluid at the left �x=−1/2� and right
walls �x=1/2�, respectively.

We now assume that the density and temperature varia-
tions across the channel are small enough for the value of the
Knudsen number to be considered constant. If we assume
that the velocity profile across the channel is linear and
search for the solutions u=u�x� and �=��x� of Eqs. �25� and
�26� in the form

u�x� = Ax + B , �29a�

��x� = Cx2 + Dx + E , �29b�

we get

A =
uWR − uWL

1 + 2Kn
, �30a�

B =
uWR + uWL

2
, �30b�

C = −
�

2�
A2, �30c�

D =
�WR − �WL

1 + 2hKn
, �30d�

E =
�WR + �WL

2
+

�

8�
A2�1 + 4hKn� , �30e�

where

h =
2�

� + 1

1

Pr
. �31�

For the LB model considered in this paper, we have h
=1.33.

To test our diffuse reflection boundary conditions and to
compare the FDLB simulation results with the analytical re-
sults, Eqs. �29a� and �30e�, we further restrict ourselves to
two particular cases. The first one is the stationary heat trans-
port problem between two parallel walls at rest. In this case,
we have uWR=uWL=0 and Eq. �29b� reduces to

��x� =
�WR − �WL

1 + 2hKn
x +

�WR + �WL

2
. �32�

The temperature jumps at the left and right walls are imme-
diately recovered from Eqs. �27a�, �27b�, and �32�:

�L
jump =

�WR − �WL

2

2h�Kn�FL

1 + 2h�Kn�FL
, �33a�
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�R
jump =

�WR − �WL

2

2h�Kn�FR

1 + 2h�Kn�FR
. �33b�

The temperature jumps at the walls become negligible only
for small values of the Knudsen number.

Note that Kn is constant in Eqs. �30a�, �30d�, and �30e�. In
Eqs. �33a� and �33b� we have restored subscripts FL and FR
as an approximation since local values of Kn are likely to
lead to better accuracy.

The second physical problem we consider here is thermal
Couette flow in the stationary state. For convenience, we set
uWR=−uWL=uW and �WR=�WL=�W. The velocity and tem-
perature profiles across the channel are still given by Eqs.
�29a� and �29b� with B=0 and D=0. The velocity slip and
the temperature jump at the walls are

uL
slip = uW

2�Kn�FL

1 + 2�Kn�FL
, �34a�

uR
slip = uW

2�Kn�FR

1 + 2�Kn�FR
, �34b�

�L
jump = uW

2 h�Kn�FL

�1 + 2�Kn�FL�2 , �35a�

�R
jump = − uW

2 h�Kn�FR

�1 + 2�Kn�FR�2 . �35b�

The equations above express the fact that Couette flow ex-
hibits no observable velocity slip and temperature jump at
the walls when the Knudsen number is small enough. Note
that in Couette flow the fluid has a higher temperature at the
walls than the walls themselves. This arises because heat is
generated by viscous flow within the fluid. In the previous
case �33a� and �33b� when the walls were at rest, there was
only heat conduction and no viscous dissipation within the
fluid.

The Navier-Stokes-Fourier equations are for a continuum
model, so they are always an approximation to a system of
particles. We only use them as a basis of Eqs. �32�–�35� to
compare our simulation results with, and not in the simula-
tion themselves. It is only a question of accuracy to state a
Knudsen number below which the Navier-Stokes-Fourier
equations are valid. According to literature, it is generally
believed that a Knudsen number less than 0.1 will suffice
�8–11�.

VI. FDLB SIMULATION RESULTS

A. Simulation parameters

Two series of FDLB simulations were done to investigate
the effect of the diffuse reflection boundary conditions intro-
duced in Sect. IV. As mentioned in the previous section, the
first series refers to stationary heat transport between two
parallel walls at rest, while the second one refers to station-
ary Couette flow between walls having the same tempera-
ture. In both cases, we used a two-dimensional lattice with
Nx=100 and Ny =5 nodes with periodic boundary conditions

along the y direction. Because of periodic boundary condi-
tions in the y direction, any integer number Ny �1 should
work as well, but we preferred to design and test a true
two-dimensional code to be used for future applications, e.g.,
long channels with customized Ny. Columns of ghost nodes
were added outside the left and right wall, respectively
�Fig. 2�.

In the initial state, the lattice was filled with a homoge-
neous fluid of nondimensionalized particle density ninitial and
nondimensionalized temperature �initial. Simulations were
started using the same values of ninitial and �initial for both
versions of the relaxation time. For simulations done with
the density-dependent relaxation time �19�, we used the val-
ues �=1.0�106 and �=1.0�1012. Since the results were
qualitatively similar, in this paper we will refer only to the
results recovered for �=1.0�106, which corresponds to a
MEMS system size lR�10−6 m. Because the density
of a gas under normal conditions is approximately
3�1025 particles/m3, we used the following set of nondi-
mensionalized values of the fluid density in the initial state in
order to achieve various values of the Knudsen number dur-
ing our computer runs:

�ninitial� = �109,108,5.0 � 107,3.3 � 107,2.5 � 107,2 � 107� .

�36�

The above values correspond to the following values of the
Knudsen number in the initial state:

�Kninitial� = �0.001,0.01,0.02,0.03,0.04,0.05� . �37�

To achieve similar values of the Knudsen numbers in the
initial state when using the constant relaxation time, the cor-
responding values of the constant relaxation time 	 were al-
ways computed using Eqs. �13� and �16�. E.g., for �initial
=1.0 and the values of ninitial given by Eq. �36�, the corre-
sponding values of 	 are

�	� = �0.0008,0.008,0.016,0.024,0.032,0.040� . �38�

According to this strategy, the results recovered using the
two versions of the relaxation time are expected to differ
only when the fluid density changes significantly across the
channel width.

The initial fluid temperature was always �initial=1.0 when
investigating the heat transport problem �in this case, the left
and right wall have different temperatures�. The initial value
of the fluid temperature was set equal to the wall temperature
�W=1.0 when simulating Couette flow. We always performed
500,000 iterations with time step �t=10−4 to achieve the sta-
tionary state before plotting the results.

B. Stationary heat transport problem

Figure 4 shows the stationary profiles of various quanti-
ties, which were computed for ninitial=2�107, �WL=0.50,
�WR=1.50. In this case, the density variation across the chan-
nel is very large �Fig. 4�a�� and the differences between
simulation results recovered using the two versions of the
relaxation time are noticeable for the following quantities:
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temperature �Fig. 4�b��, pressure �Fig. 4�c��, Knudsen num-
ber �Fig. 4�d�� and average speed �Fig. 4�e��. When the dif-
ference between the right and left wall temperatures ��WL and
�WR� becomes small enough with respect to their mean value
�=1.0, the differences between the results recovered using
the two versions of the relaxation time become negligible.

According to Eq. �24�, the fluid pressure is expected to be
constant. Figure 4�c� shows the pressure profiles established
between the walls for both versions of the relaxation time.
The variation of the pressure near the walls is found to be
less than 0.5% the mean value. However, the pressures re-
covered using the two versions of the relaxation time differ
by nearly 3% when �WL=0.50 and �WR=1.50. In this case,
the two versions of the relaxation time give noticeable dif-
ferences also for the profiles of the temperature and average
speed �Figs. 4�b� and 4�e��. This is different from the case

�WL=0.90, �WR=1.10, when the pressure profiles recovered
using both versions of the relaxation time differ only by
0.1%.

A characteristic of the first order upwind scheme used in
this paper, which plagues the simulation results is the pres-
ence of a spurious velocity ux in the regions where the x
component of the density gradient is not negligible �34�. The
profiles of the spurious velocity ux are shown in Fig. 4�f�.
Even for the case �WL=0.50, �WR=1.50, the spurious velocity
is found to be negligible with respect to the sound velocity
cS=�2�. Reduction of the spurious velocity may be achieved
using higher order finite difference schemes or flux limiter
schemes �35,36�. However, higher order schemes involve
more than two lattice nodes on the characteristic line and the
implementation of the diffuse reflection boundary conditions
becomes more elaborate.

FIG. 4. Heat transport between two parallel walls at rest—stationary profiles of various nondimensionalized quantities, for ninitial=2
�107, �WL=0.50, �WR=1.50: �a� density, �b� temperature, �c� pressure, �d�, Knudsen number, �e� average speed c̄, and �f� spurious velocity
ux. Results recovered using the constant relaxation time carry the symbol 	 while results recovered using the density dependent relaxation
time defined by Eq. �19� carry the symbol �.
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Figure 5 shows the stationary temperature profiles estab-
lished between the rest walls for �WL=0.90, �WR=1.10 and
various values of the initial �mean� density of the fluid, when
the density dependent relaxation time is used. The tempera-
ture jumps near the walls are clearly seen when the mean
fluid density decreases and the Knudsen number becomes
large enough. Note that the temperature jumps near the left
and right wall seem to be approximatively equal when the
difference between the corresponding wall temperatures is
small and the assumptions in Sec. V apply. In this case, the
temperature profiles are quite linear and we expect Eqs. �32�,
�33a�, and �33b� to be valid. To check this, we computed the
local fluid temperatures and Knudsen numbers near the left
and right walls respectively using linear extrapolation of the
corresponding values in the adjacent lattice nodes. The re-
sults are plotted in Fig. 6 and compared to the analytical
formulae, Eqs. �33a� and �33b�. The agreement between the
simulation results and the theory is excellent for �WL=0.90,
�WR=1.10 �Fig. 6�a��, for both versions of the relaxation
time.

For wall temperatures �WL=0.50, �WR=1.50, the values of
the temperature jumps in Fig. 6�b� show some deviation
from the analytical formulae, Eqs. �33a� and �33b�. For these
values of the wall temperatures, the fluid temperature profiles
in Fig. 4�b�, which were recovered using the density depen-
dent relaxation time given by Eq. �19�, are no longer linear.
However, the fluid temperature profiles recovered using the
constant relaxation time are still approximately linear in this
case, as seen in Fig. 4�b�, because of constant values of the
transport coefficients. The assumption of constant values of
the transport coefficients explains why the results in Fig. 6�a�
are well superposed for both versions of the relaxation time.
As previously mentioned in Sec. V, we do not expect the
analytical results, Eqs. �32�, �33a�, and �33b�, to be still valid
when the difference between the wall temperatures is consid-
erable with respect to their mean value. In this case, the
values of the temperature jumps recovered using the constant
relaxation time and those recovered using the density depen-
dent relaxation time differ significantly �Fig. 6�b��.

C. Couette flow

Figures 7�a� and 7�b� show the linear velocity profiles and
the parabolic temperature profiles established between two
parallel walls moving in the opposite directions �uW=0.1 and
�W=1.0�, for both versions of the relaxation time. The slip
velocity and the temperature jump near the walls are clearly
seen when the Knudsen number is large enough. Since there
are no large variations of the temperature and fluid density
across the channel in Couette flow, the results recovered us-
ing the two versions of the relaxation time are similar in this
case.

It is worthwile to compare our parabolic temperature pro-
files in Fig. 7�b� and the corresponding profiles recovered by
Watari and Tsutahara �16�, which place the lattice boundary
nodes on the channel walls. These authors use a different
method to impose boundary conditions �26,27� and plot the
profile of the nondimensionalized energy per particle, which
is equivalent to temperature. For various values of the relax-
ation time, the temperature profiles recovered by Watari and
Tsutahara for Couette flow are indistinguishable and tem-
perature jumps are never observed near the walls.

Figure 8 show the dependence of the temperature jump
and velocity slip on the value of the Knudsen number, for
wall velocity uW=0.5 and three values of the wall tempera-
ture. Results in this figure were recovered using both ver-
sions of the relaxation time. The values of the temperature

FIG. 5. Heat transport between two parallel walls at rest: non-
dimensionalized temperature profiles recovered in the stationary
state using the density dependent relaxation time 	 given by Eq.
�19�, for �WL=0.90, �WR=1.10 and three values of the initial fluid
density n.

FIG. 6. Heat transport between two parallel walls at rest: Knud-
sen number dependence of temperature jumps at the left and right
walls, recovered using both versions of the relaxation time. Results
recovered using the constant relaxation time carry the symbol 	
while results recovered using the variable relaxation time defined
by Eq. �19� carry the symbol �. Wall temperatures are �a� �WL

=0.90, �WR=1.10; �b� �WL=0.50, �WR=1.50.
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jumps are found to be in good agreement with the analytical
results, Eqs. �35a� and �35b� derived in Sec. V. Concerning
the dependence of the velocity slip on the Knudsen number,
our simulation results suggest that there should be an extra
factor � which multiplies the Knudsen number in Eqs. �34a�
and �34b�:

uL
slip = uW

2��Kn�FL

1 + 2��Kn�FL
, �39a�

uR
slip = uW

2��Kn�FR

1 + 2��Kn�FR
. �39b�

If the value ��1.15 is used, we obtain a better fit to the
simulations of velocity slip, as shown in Fig. 8�b�. This �
factor might be related to different definitions of the mean
free path and the fact that the mean free path for energy
transport might differ from that of momentum transport.
However, in view of the approximations involved in Eqs.
�27� and �28� and the analytical solutions, this agreement
may be fortuitous.

VII. CONCLUSIONS

Diffuse reflection boundary conditions for the thermal fi-
nite difference lattice Boltzmann model with multiple speeds
�16� were introduced in this paper. These conditions account

for the redistribution of fluid particles which hit the walls
such that the reflected particles carry some information from
the wall. Their distribution functions depend on the wall’s
temperature and velocity. A square lattice is used to solve the
set of evolution equations recovered after discretization of
the velocity space and we used the first order upwind scheme
to calculate the space derivatives. The distribution functions
of the reflected particles are defined in ghost nodes outside
the flow domain such that the channel walls are placed at
half lattice spacing between the ghost nodes and the bound-
ary nodes of the lattice.

In this paper, we also introduced a nondimensionalized
relaxation time that is dependent on the local particle number
density, as well as the local average speed of the fluid par-
ticles, Eq. �14�. This relaxation time provides an alternative
to the constant relaxation time used in the lattice Boltzmann
literature. The two relaxation times give qualitatively similar
results when the nondimensionalized density and tempera-
ture do not differ much from their average values in the fluid
system.

FDLB simulations done using the diffuse reflection
boundary conditions and both versions of the relaxation time
�constant or density dependent� were carried out for two test
problems: stationary heat transport between two parallel
walls at rest and Couette flow between walls having the same
temperature. In both test problems, temperature jumps at the
walls become noticeable when the Knudsen number exceeds
the value 0.001. Slip velocity accompanies the temperature

FIG. 7. Couette flow: �a� velocity profiles and �b� temperature
profiles recovered using both versions of the relaxation time for
wall temperatures �WR=�WL=1.00 and velocities uWR=−uWL=0.1.
Results recovered using the constant relaxation time carry the sym-
bol 	 while results recovered using the variable relaxation time
defined by Eq. �19� carry the symbol �.

FIG. 8. Couette flow: effect of Knudsen number on the tempera-
ture jump �a� and velocity slip �b� for uW=0.5 and three values of
the wall temperature. Results recovered using the constant relax-
ation time carry the symbol 	 while results recovered using the
variable relaxation time defined by Eq. �19� carry the symbol �.
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jump in Couette flow. The effect of the local Knudsen num-
ber on the temperature jump and slip velocity observed dur-
ing the FDLB simulations was found to agree approximately
with the theories of Maxwell and Smoluchowski.

Finally, we note that our boundary conditions were estab-
lished under the assumption that there is no tangential com-
ponent of the fluid density gradient near the wall. Further
work is necessary to incorporate the general case when fluid
density, as well as temperature, are allowed to vary along the
wall. This would allow us to use FDLB models in order to
investigate rarefaction effects in pressure-driven microscale

flow, as well as less common phenomena such as thermal
transpiration �8�.
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